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DETERMINATION OF THE TEMPERATURE-DEPENDENT VARIATION OF THE 

THERMAL CONDUCTIVITY OF A COMPOSITE MATERIAL FROM THE DATA 

OF A NONSTATIONARY EXPERIMENT 

E. A. Artyukhin and A. S. Okhapkin UDC 536.24.02 

We consider the construction of an iteration algorithm for reconstructing the tem- 
perature-dependent variation of the thermal conductivity in the generalized energy 
equation from the data of temperature measurements at one or more points in the 
interior of the body. 

In investigating the thermophysical characteristics of composite materials, it often be- 
comes necessary to use new methods for the analysis and processing of experimental data~ 
These methods must provide a possibility of processing the results of a nonstationary thermal 
experiment and obtaining the maximum amount of reliable information concerning the material 
under study when the accuracy characteristics of the measurement systems are limited [i]. 

The intensive development of the theory and the expansion of the fields of practical 
application of methods for the solution of inverse problems in heat exchange have led to 
their widespread use in thermophysical investigations. 

A particularly timely use of the inverse-problem apparatus is its application to the in- 
vestigation of the thermophysical characteristics of high-temperature composite materials 
under nonstationary conditions. Such an approach enables us to eliminate the problem of 
simulating the structure of the material and the character of the internal processes under 
nonstationary thermal influences. Furthermore, in this case there is a possibility of con- 
sidering the problem of thermophysical investigations as a complex problem in the simul- 
taneous determination of many interrelated characteristics. 

Inverse problems usually belong to the class of ill-posed problems of mathematical 
physics [2]. In solving boundary-walue and coefficient-type inverse problems in heat conduc- 
tion, iterative methods have been found to be very effective [3-5]. 

The basic purpose of the present study is to investigate the possibilities of con- 
structing iteration algorithms of the gradient type for reconstructing the thermophysical 
characteristics of a composite material from the solution of a coefficient-type inverse prob- 
lem for the nonlinear generalized heat-conduction equation. We analyze a mathematical model 
which takes account of the processes of thermal decomposition and filtration [i]~ 

We shall consider the following problem. For a given mathematical model of the process 
of heat and mass exchange during the intense heating of a composite heat-shielding material 
and known boundary conditions, it is required to reconstruct the temperature-dependent varia- 
tion of the thermal conductivity %(T) and the temperature field T(x, T) from the data of tem- 
perature measurements at one or more interior points of the body under investigation. The 
mathematical model of the process being investigated has the following form: 

OT 0 (~(T) O__TT ~ Ohm(T) OT Om~ h~(T), 
c(T) 

0"~ Ox ~ Ox 1, " OT Ox Ox 

Y(O, T) = i~('~), (2)  
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T (b, "r) = fN ('r), (3) 
T(x,  0)=  q)(x), O ~ x ~ b ,  (4) 

d z A z " e x p ( - - / _ ) ,  T O T o ,  (5) 
dT ~ R T ) ,  _ 

dz -- O, T < T o ,  (6) 

Omg_ = _ _  (1 -- kr) Po d--!-z , (7) 
Ox dT 

Omg dx, O ~ x ~ b ,  (8) 
mg ~ ,J OX 

0 

T(xi, T)=fi(x),  0 < x i < b ,  i - - 2 ,  3, . . .  , N - - l ,  (9) 

where c(T), hg(T), ~(x), fi(z), i = i, 2, 3, ..., N, are known functions. The parameters in 
the expressions (5)-(7) describing the process of thermal degradation in the composite 
material are assumed to be given. 

Using the parametrization of the desired function ~(T), we can reduce the initial non- 
linear variational problem to an extremal problem which consists in finding a vector of param- 
eters that minimizes the selected quality criterion. A very convenient type of parametriza- 
tion is the approximation of the functions by B-splines [6]. In this case the thermal con- 

ductivity can be represented as a function of the temperature in the form 

m+ I 

: %(T)= Z %jBj(T), (I0) 
i=-I 

where %j are the desired coefficients of the spline; Bj(T) are the B-splines. 

The inverse problem formulated in this manner will be treated as an optimal-control 
problem, where the control influence is the vector of parameters I = {I_i, Xo, ..., %m+i}. 
As the target functional we select the rms deviation 

N--1 ~m 

I (x, ~, Z (T)) = ~ .I [T, (x, T, % (T))-- fz (~)]Zd~. ( i l )  
i = 2  0 

The solution of the extremum problem (i)-(ii) will be constructed by using gradient 
methods of minimization. To do this, we obtain formulas for the components of the gradient 
of the functional (ii) in terms of the desired parameters. 

If measurements of the temperature are made in the interior of the body under investiga- 
tion, it is convenient to represent the system of equations (1)-(8) as a problem in the heat- 
ing of an unbounded multilayer plate in which the layers have identical thermophysical prop- 
erties. This approach enables us, in the numerical integration of the system (1)-(8), to 
introduce a nonuniform network in the space coordinate. Assuming that there is ideal contact 

between the individual layers, we find 

OTi 0 (~,(T) OT~ 
c (V) o----4- = 0--7- 

0 < ~ < . % ~ ,  i - - 1 ,  2, 

T1 (0, 

T~-I (&, "Q = Ti (xi, "Q, 
OTi_I (xl, "~) OTi (&, 

Ox Ox 

TN--I (b, 

T~ (x, O)= +~ (x), 

dz Az n exp 
dl: 

COhg (T) OTi Omg hg (T), 
- -  I"Tlg 

OT~ oX Ox 

.. , N - - l ,  & .-  O, XN = b, 

"0 = h (~), 

"0 i = 2 ,  3, . . . ,  N - - l ,  

�9 ) = fN (~), 
i = l ,  2, . . .  , N - - l ,  

E ', T~>~To, 
RTI ) '  

(12) 

(13) 

(14) 

(15) 

(16) 
(17) 

(18) 
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dz 
= 0 ,  T,<To,  (19)  

dr 

Omr 
- ( l - - k r ) p o  d--c, (20) 

Ox dr 

S am~ (21) m~.= ~ dx, O~<x<b,  
Ox 

0 

Ti(xi, ~ ) = / , ( ~ ) ,  X,<X,<XN,  i =  2, 3, . . .  , N - -  1. (22)  

The i n v e r s e  p r o b l e m  i s  t h a t  o f  d e t e r m i n i n g  t h e  v e c t o r  ~ = {1 1, t o ,  . . . ,  lm+~} w h i c h  
m i n i m i z e s  t h e  f u n c t i o n a l  ( 1 1 ) ,  t a k i n g  a c c o u n t  o f  t h e  c o n d i t i o n s  ( 1 2 ) - ( 2 2 ) o  

If the components of the desired vector I are given small increments A%~, j = --i, 0, . . . .  
Making use m + i, then the temperature Ti(x , T) will show an increment Oi(x, Y). " ~ of the sys- 

tem (12)-(21), we can show that in the linear approximation the function @i(x, T) satisfies 

the following boundary-value problem: 

c = L - - +  2 k + § 
az ax 2 aT, ax ~ L ~  \ ax j aT, ax z ax aT, + 

ac aT, ] ~ ,  ~ o(A~)( aT, ~2 a2T~ 
~' OT~ a ~  aT, ---a-x-x J, § A~--ax 2 , 

O<~-<~'~r~, x , < x < x i + i ,  i ~ l ,  2, . . .  , N - - l ,  

x l = 0 ,  X N = b ,  (23)  

t~ I (0, T) ---- O, (24) 

~i- l (x~,  x) == ~,(x,,  "c), l (25) 

O@~-l(x~, z) _ aoi(xi, T) f i = 2 ,  3 . . . .  , N - - l ,  (26)  

Ox Ox 

t~X--~ (b, "~) = 0, (27)  

tq,(x, 0 ) =  0, i - -  1, 2, . . .  , N - - 1 ,  (28)  

where 
Oh g ( T) am~ 

= mg ; Q = ~g (T)  
OT~ Ox 

To calculate the coefficients k and Q in Eq. (23) we use relations (18)-(21). 

We write the linear part of the increment of the target functional: 

N--I im AI = 2 ~ [T, (x,, ~) - -  [, (~)1 ei  (xi, ~) dr. 
i = 2  0 

( 2 9 )  

It should be noted that in the linear approximation the boundary-value problem for the func- 
tion Oi(x ~ T) in the form (23)-(28) is also valid for the case in which To depends on the rate 
of heating 3T(x, ~)/3T. 

Introducing the boundary-value problem conjugate to system (12)-(22) enables us to ob- 
tain analytic expressions for the components of the gradient of the target functional. In 
this case the boundary-value problem for the conjugate variable ~i(x, T) has the form 

- - c - -  = , t  . . . .  4- k q~, 
0~ ax = ax aT, 

0 < z - ~ r  .... x~<x<x~+~, i----- 1, 2, . . .  , N - - 1 ,  (30)  

~i (0, T) = O, (31)  
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~N-I (&, m) = '~i (&, Q, t (32) 

aq~-I (xi, m) aq~i (&, ~).__ I 
Ox 8x } i = 2 ,  3 . . . . .  N - - l ,  

I 
2 

[T, (&, -c) - -  f~ ('c)], [ (33) 

~N-I (b, ~) = 0, 

~ i ( x ,  ~ , . ) =  0, i =  1, 2 . . . . .  N - - 1 .  

(34) 

(35) 

Making use of the relations (33), (31), and (26) as well as Eqs. (23) and (30) and Eqs. 
�9 (35), (27), and (32), after some transformations, we obtain an expression for the increment 
of the functional 

AI = %7 ~2~ A~, dxd'~. 
L -OT7 t--&--x ) 

i = 1  ~ xi 
Taking i n t o  a c c o u n t  t h e  r e p r e s e n t a t i o n  of  t h e  d e s i r e d  f u n c t i o n  in  the  form 
f o l l o w i n g  e x p r e s s i o n s  f o r  t he  components  o f  t h e  t a r g e t  f u n c t i o n a l  v e c t o r :  

N--I im fi+l E [ dB](T)(OTi~2 C~9'Til 
l~s_  OI _ th dT, t ~ )  +Bs(T)--~xZ jdxd~c' 

(36) 

(i0), we have the 

(37) 

Knowing the value of the gradient of 
successive approximations on the basis of the method of conjugate gradients [7]. In this 

case the approximations are carried out by the formula 

~<s+~ _-_ -~s)  + ~z~s~(s),: S = 1, 2 ,  3, . . .  , 

- , (s)~(s-1) where X = {X_I, Xo, ..., Xm+1}, ~(S) = _Ix + ~ 

G={g~,--1, g;%, . . -  , g~'ra+t}; 6 (I)= O; 
N - - 1  "r m 

5 
~ (s )  = i = l  o N--1 

Z ; m(li(S-1))2dT 
i :=1  0 

a(S) is the depth of descent, S is the iteration number. 

It can be shown that the problem (23)-(28) is linear in the parameter a (S), i.e., 

~i(x, ~, ~(s), A;~)= cds)@i (x, ~, 1, AN). 

1, O, . . .  , m + l .  

the target functional, we construct the process of 

( 3 8 )  

The value of the target functional at the (S + l)-th iteration will be represented in the form 

N - - 1  "r 

l(S+~) ----- Z S [T~ (&, x, -~(s)) + ~r % ~ ( s ) ) _  f~ (.Ql2dz, 
i : 2  0 

where the magnitude of the step ~(S) is taken from the condition that I is minimum at each 
iteration. Differentiating I(S+I) with respect to ~(S) and equating the derivative to zero, 
we obtain a relation for the linear estimate of the descent step: 

(Z ( S )  = - -  

N - - I  "r t;q, 

i : 2  0 

[Ti (xi, m, ~(s)) __ fi (T.)] 0i (Xi, Z, O<S)) d'~ 

N - - I  "['nz 

[ <  (x,, )i 
i=2 O 

(39) 

The iteration process is constructed as follows. We are given the initial value of the 
desired vector, ~(z), we solve the direct problem (12)-(21), and we determine the temperature 
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Fig. i. Temperature at the points where the thermocouples are 
set up: I) exact values; 2) perturbed values; 3, 4) values ob- 
tained by solving the inverse problem for the exact and the 
perturbed data, respectively. 

Fig. 2. Reconstruction of the thermal conductivity of a oompos- 
ite material: i) exact values; 2) initial approximation; 3, 4) 
solution of the inverse problem for the exact and the perturbed 
data, respectively. 

field. Next we solve the conjugate problem (30)-(35), and by formula (37) we calculate the 
components of the gradient of the target functional in terms of the desired parameters. After 
this we solve the problem (23)-(28), and using Eq. (39), we estimate the magnitude of the 
descent step. The new approximation to the desired vector is determined from the relations 

(38), and after this the calculation process is repeated. For the case in which we know the 
exact values of the input temperatures, the iterative process is halted by the condition 

abs (T i -- fi) ~T, i.e., i = 2, 3 .... , N -- i, where ~T > 0 is the error in the calculation 
of the temperature profile at the points where the thermocouples are set up. In the case when 
the input temperatures are given with an error, the process is halted by the discrepancy 
criterion~ i.e., when the condition 

N--] ~m 

Z I [T~(xi, ~)-- ~ (m)12dT~6 z 

N--I im is satisfied, where ~2= E . o~dm is the estimate of the generalized error of the initial 
~2 0 

data; oi(m) is the rms deviation of the input temperatures at the points x = x i at time m. 
With such an approach we can realize a regularized algorithm for the solution of the inverse 
heat-conduction problem considered here [8]. 

The above-described algorithm was used as the basis of a FORTRAN program for the BESM-6 
computer. We used the implicit monotonic approximation scheme of [9] for boundary-value prob- 
lems on the network 

( o = { x g = h i ,  i = O ,  1, . . .  , N; w j = A ~ ] ,  ] = 0 ,  1 . . . . .  m}. 

As an example illustrating the workability of the proposed algorithm, we considered the 
inverse problem for the reconstruction of the temperature-dependent variation of the thermal 
conductivity of a composite heat-shielding material with a silicon-organic resin base. 

To describe the nonstationary heating of the material, we used the system of equations 
(12)-(21). The values of the parameters characterizing th~ thermal-degradation processes~ 
as well as the functions c(T) and hg(T), were assumed to be known. The desired function X(T) 
was approximated by cubic B-splines, and the number of subdivision segments of the maximum 
temperature interval was taken to be 3. 
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As the initial data for the solution of the inverse heat-conduction problem~ we used the 
curves of temperature as a function of time obtained from the solution of the direct problem 
(12)-(21) for boundary conditions of the second kind. Figure i shows in dimensionless form 
the variation of the temperature at the points x~ = 0, x2 = 2.1oi0 -3 m, x3 = 2.8"10 -3 m, x4 = 
3.5.10 -3 m. 

To solve the inverse problem for perturbed data, the deviations of the input temperatures 
from their exact values were simulated by a random-number generator with a uniform distribu- 
tion law. The error did not exceed 3% of the maximum value of the temperature. 

Figure 2 shows the exact values of the temperature as a function of the thermal conduc- 
tivity and the values reconstructed from the inverse problem for a composite heat-shielding 
material. As can be seen, the solution of the inverse problem was obtained with fairly high 
accuracy, which indicates that it is possible to determine reliable thermophysical char- 
acteristics for real materials under nonstationary conditions of thermal loading. 

NOTATION 

e, volumetric heat capacity; %, thermal conductivity; mg, specific mass flow rate; hg, 
enthalpy of the gaseous phase; T, temperature; x, coordinate; T, time; Tm, the right-hand 
boundary value of the time interval; fi(T), input temperatures; z, concentration of the de- 
composable component; A, preexponential multiplier; n, order of the decomposition reaction; 
E/R, activation energy; kT, limiting value of the coke number; Po, density of the initial 
material; To, temperature at the beginning of thermal degradation; b, right-hand boundary 
value of the spatial interval; I, functional; ~, increment of temperature; 4, conjugate vari- 
able; i, spatial index; Tmax, maximum value of the temperature; %max, maximum value of the 
thermal conductivity. 
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